The ‘other’ coral symbiont: Ostreobium diversity and distribution

ostreobium

Published in The ISME Journal

The ‘other’ coral symbiont: Ostreobium diversity and distribution

Javier del Campo, Jean-François Pombert, Jan Šlapeta, Anthony Larkum, Patrick J. Keeling

Ostreobium is an endolithic algal genus thought to be an early-diverging lineage of the Bryopsidales (Ulvophyceae, Chlorophyta). Ostreobium can live in low-light conditions on calcium carbonate substrate in tropical conditions. It is best known as a symbiont of corals, where it lives deep within the animal skeleton and exchanges nitrogen and carbon, as well as providing nutrients and photoassimilates. In contrast to the relatively well-studied role of the photosynthetic zooxanthellae symbionts in coral (Symbiodinium), Ostreobium phylogeny, diversity and distribution are all poorly understood. Here, we describe the phylogenetic position and diversity of Ostreobium based on plastid 16S ribosomal DNA (rDNA), 18S rDNA and rbcL genes from a nuclear genome survey and complete plastid genome, and determined its environmental diversity and distribution by screening the publicly available environmental data for those genes. The results shed light on the phylogeny and the ecology of the ‘other’ coral symbiont.

Reference Tree and Environmental Sequence Diversity of Labyrinthulomycetes

labys

Published in The Journal of Eukaryotic Microbiology.

Reference Tree and Environmental Sequence Diversity of Labyrinthulomycetes

Jingwen Pan, Javier del Campo, Patrick J. Keeling

Labyrinthulomycetes are heterotrophic stramenopiles that are ubiquitous in a wide range of both marine and freshwater habitats and play important roles in decomposition of organic matter. The diversity and taxonomy of Labyrinthulomycetes has been studied for many years, but we nevertheless lack both a comprehensive reference database and up-to-date phylogeny including all known diversity, which hinders many global insights into their ecological distribution and the relative importance of various subgroups in different environments. Here, we present a curated reference database and a phylogenetic tree of Labyrinthulomycetes small subunit ribosomal RNA (SSU or 18S rRNA) data. Based on this created reference database, we analyzed high-throughput environmental sequencing data, revealing many previously unknown environmental clades and exploring the ecological distribution of various subgroups. Particularly, a number of newly identified environmental clades that are widespread in the open ocean. Comparing the manually curated reference database to existing tools for identification of environmental sequences (e.g. PR2 or SILVA databases) suggests that the curated database provides a higher degree of specificity and a lower frequency of misidentification. The phylogenetic framework and database will be a useful tool for future ecological and evolutionary studies.

Molecular diversity and distribution of marine fungi

BMfungi

Published in Proceedings of the Royal Society B

Molecular diversity and distribution of marine fungi across 130 European environmental samples

Thomas A. Richards, Guy Leonard, Frédéric Mahé, Javier del Campo, Sarah Romac, Meredith D. M. Jones, Finlay Maguire, Micah Dunthorn, Colomban De Vargas, Ramon Massana, Aurélie Chambouvet

Environmental DNA and culture-based analyses have suggested that fungi are present in low diversity and in low abundance in many marine environments, especially in the upper water column. Here, we use a dual approach involving high-throughput diversity tag sequencing from both DNA and RNA templates and fluorescent cell counts to evaluate the diversity and relative abundance of fungi across marine samples taken from six European near-shore sites. We removed very rare fungal operational taxonomic units (OTUs) selecting only OTUs recovered from multiple samples for a detailed analysis. This approach identified a set of 71 fungal ‘OTU clusters’ that account for 66% of all the sequences assigned to the Fungi. Phylogenetic analyses demonstrated that this diversity includes a significant number of chytrid-like lineages that had not been previously described, indicating that the marine environment encompasses a number of zoosporic fungi that are new to taxonomic inventories. Using the sequence datasets, we identified cases where fungal OTUs were sampled across multiple geographical sites and between different sampling depths. This was especially clear in one relatively abundant and diverse phylogroup tentatively named Novel Chytrid-Like-Clade 1 (NCLC1). For comparison, a subset of the water column samples was also investigated using fluorescent microscopy to examine the abundance of eukaryotes with chitin cell walls. Comparisons of relative abundance of RNA-derived fungal tag sequences and chitin cell-wall counts demonstrate that fungi constitute a low fraction of the eukaryotic community in these water column samples. Taken together, these results demonstrate the phylogenetic position and environmental distribution of 71 lineages, improving our understanding of the diversity and abundance of fungi in marine environments.